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Abstract 

 In this research, we have developed a generic prototype of a flood-forecasting model that 

is transferable to other locations around the Midwest to monitor and forecast flood potential at 

critical infrastructure points, such as bridges, where streamflow gauges are unavailable. Our 

efforts have centered on improving runoff generation representation and transferring our tools to 

the University of Nebraska. In this phase, we focus on improving the model and transferring our 

technology. As part of our improvements, we included snow processes in a hillslope link model 

(HLM), added a different runoff generation scheme, and developed a data assimilation approach 

to improve forecasts using downstream observations. Additionally, we describe the outcomes of 

our technology transfer to the University of Nebraska implementing HLM-Snow in the Elkhorn 

River watershed. 
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Chapter 1 Preliminaries: The Iowa Flood Center HLM hydrological model 

The Iowa Flood Center hydrological model, Hillslope-Link Model (HLM), is a 

distributed hillslope-scale rainfall-runoff model that partitions Iowa into over three million 

individual control volumes following the landscape decomposition outlined in Mantilla and 

Gupta (2005). The model is parsimonious, using ordinary differential equations to describe 

transport between adjacent control volumes. This characteristic reduces the computational 

resources needed by capturing the most essential features of the rainfall runoff transformation; it 

uses only a few parameters to obtain acceptable results. The model partitions the river network 

into river links (the portion of a river channel between two junctions of a river network) and the 

landscape into hillslopes (adjacent areas that drain into the links). 

 

  

(a) (b) 
Figure 1.1 (a) illustration of landscape decomposition into hillslopes and decomposition of the 
river network into channel link and (b) vertical soil profile and control volumes included in the 

hydrological model. 

 

Mass conservation equations form the system of coupled nonlinear ordinary differential 

equations that represent changes in the water storage in the hillslope surface (ssurf), top soil (stops), 

and deep soil (sdeeps) given by, 
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(1.1) 

(1.2) 

(1.3) 

 

Fluxes in, across, and out of the vertical hillslope control volumes include precipitation 

p(t), overland runoff qrunoff(t), infiltration into the topsoil qinfil, percolation from the topsoil into 

the deeper soils qpercol(t), baseflow into the channel qbaseflow(t), and evaporation from the ponded, 

topsoil, and deep soil layers (esurf(t), etops(t) and edeeps(t), respectively). The model assumes that 

percolation flux is a linear function of the amount of water stored at time t in the topsoil 

qpercol=kpercol·stops and that the baseflow is a linear function of the water stored in deep soil 

qbaseflow=kbaseflow·sdeeps. Overland runoff is a power function of the water stored on the hillslope 

surface (consistent with Manning’s equation) given by, 

 

 (1.4) 

 

and infiltration is a nonlinear function of soil moisture content (stops/Ttops), where Ttops is the 

thickness of the topsoil layer (i.e., A-horizon) and a linear function of hydraulic head ssurf given 

by, 

 

 
(1.5) 
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Where kdry corresponds to the case of dry soil and, similarly to krunoff, kpercol, and kbaseflow, 

can be interpreted as a time constant (residence time) of the respective storage component. The 

average hillslope area (ah) for the elements in the distributed model is 0.05 km², and average link 

length (llink) is 400 m. Note that ah/(2llink) is the hillslope length. The exponent φ is a nonlinearity 

introduced by the change in the potential matric of the soil column as soil moisture changes with 

time. 

The HLM should be thought of as a modeling system rather than a single specific model. 

As the equations describing hillslope-scale processes are separated from the numerical solver, it 

is rather easy to explore different mathematical descriptions for water fluxes. For example, one 

can consider simplifications such as a constant runoff coefficient or water transport velocity, or 

one can formulate these components based on the available physical characteristics.  

Water transport through the river network is nonlinear and governs how channel links 

propagate flow through the river network. Formulated in the context of a mass conservation 

equation developed by Gupta and Waymire (1998), it uses the water velocity parameterization 

given by Mantilla (2007) as, 

 

 
(1.6) 

 

where qlink is the discharge from the link at time t, ah is the total hillslope area draining to 

the link, q1(t) and q2(t) are the incoming flows of the upstream tributaries, A is the upstream 

basin area, and λ1, λ2, and v0 are global parameters of the water velocity component of the model 

and are set to 0.2, -0.1, and 0.3, respectively. The model can capture the main features of the 

hydrographs including the maximum stage. We used the model in several studies e.g. Ayalew et 

( )
1 2
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4 

 

al. (2014) and Cunha et al. (2012). We also discuss the model performance in Krajewski et al. 

(2017). The model is driven by radar-rainfall estimated from Level II NEXRAD data from seven 

WSR-88D weather radars covering the state of Iowa. The maps of rainfall intensity have spatial 

resolution of about 0.25 km2 and are updated every five minutes. The algorithms are described in 

Krajewski et al. (2013) and Seo and Krajewski (2015). 

An important aspect of our modeling approach is the avoidance of calibration. Instead, 

we rely on detailed information of the physical properties we model. This includes the 

topography, land use and land cover, soil properties, and details of the main forcing, i.e., 

precipitation. Comparing simulation results to streamflow observations across Iowa validates the 

model formulation and parameterization. Therefore, we can view the model as data-intensive and 

calibration-free when used in forecast-mode. This, in turn, implies that with more detailed, 

relevant, and accurate data, including model states and physical domain characterization as well 

as the driving inputs, the model will work better. The model is fully automatic in the sense that 

no corrections are applied to the model as it moves forward in time once initial and boundary 

conditions are imposed. 

The model predicts the streamflow fluctuations associated with storm events over the 

catchment of interest using current observations of rainfall, and rainfall forecasts. The effect of 

storms on river ways is usually delayed ranging from days to weeks. Each point of interest in the 

landscape (bridge, culvert) can then be categorized according to the maximum warning time. The 

web interface provides a visual tool to show when a particular location will be impacted, and it 

provides an inundation map for the particular peak flow expected for that location. Inundation 

maps are more effective tools in communicating the effects of flooding than crest stages at 

specific locations.  
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Chapter 2 HLM model improvements 

This chapter delves into the process of advancing HLM. We explore the integration of a 

high-definition network, the representation of snow processes, the evaluation of two IFC rainfall 

products, and the assimilation of data upstream. These critical components play a pivotal role in 

enhancing the accuracy and reliability of hydrological forecasts. We aim to refine our 

understanding of water resources and improve our forecasting capabilities. 

2.1 High-definition network   

We have been working on a methodology to develop a network for HLM that closely 

follows the observed network and is informed of the rivers’ and creeks' names. Our development 

uses Digital Elevation Models (DEM) with a resolution of 10m and the official streamflow 

network of the U.S. (NHDplusV2) created by the USGS. We start by converting the NHDplus 

network into a raster format using the properties of the DEM. Then, we burn the NHDplus raster 

into the DEM. Finally, we process the burned DEM using TauDEM. We obtain a network suited 

for HLM closely following NHDplus from the process (Figure 2.1). 
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Figure 2.1 Example of the new HLM network following NHDplus closely. 

 

Depending on the size of the area processed, the described process may be 

computationally intensive. In our case, we processed Iowa in four regions using the definitions of 

level four HUCs (see Figure 2.2), and the four regions in the University of Iowa HPC. The 

process for each domain took around one day. Nevertheless, the process only needs to be done 

once for each region. 
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Figure 2.2 Processed regions using the NHDplus network and DEM. 

 

Additionally, we developed an algorithm to perform a conflation between the HLM and 

NHDplusV2 networks. The detailed description of the network allowed us to perform 

hydrological simulations at a scale that corresponds with the observed features of the landscape. 

In the process, we assign NHDplus IDS to each HLM network element (see Figure 2.3). The 

conflation connects HLM and NHDplusV2 segments allowing us to perform future comparisons 

with the National Water Model (NWM). Also, we established a link between the HLM segments 

and the names of the rivers allowing more interaction in the communication of the forecasts. The 

described connection represents a significant improvement that allows performing regional flood 

forecasts on a human scale. 
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Figure 2.3 Example of the new HLM network following NHDplus closely. 

 

Currently, we are using the conflated network in some regions of Iowa. The described 

approach represents a significant step in developing a flood forecasting system. Following the 

observed streamflow network allows increased model performance and more accurate forecasts. 

Moreover, it also allows better communication with the authorities and communities. On the 

other hand, the conflation represents a significant advance that allows performing regional flood 

forecasts on a human scale and the eventual use of automated systems. 

The methodology described here can be easily extended to other areas of the contiguous 

U.S. since it only uses NHDplus, a product available in the country. In our case, we limit the 

regions using level four HUCs. We decided to use this limitation to reduce the number of 

elements simulated in HLM. With our approach, each region has around 200K elements, which 

allows us to explore HLM results without having long execution times. 

2.2 Snow process representation 

We developed a snow parameterization for HLM (HLM-Snow) in conjunction with the 

University of Nebraska. Following the formulation proposed by Koya et al. (2023), we 
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implemented HLM-Snow to represent snow accumulation and melting processes on hillslopes. 

HLM-Snow adds a storage 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and uses the temperature threshold (TT) method to represent 

Snow Water Equivalent (SWE) accumulation and melting. Compared to other TI schemes, TT is 

among the simplest (Kienzle, 2008), adding just two parameters to the model and keeping its 

parsimony. In TT, depending on a threshold temperature, 𝑇𝑇𝑏𝑏 precipitation falls as liquid rainfall 

or SWE. If the air temperature 𝑇𝑇(𝑆𝑆) is lower than 𝑇𝑇𝑏𝑏, precipitation accumulates in the snow 

storage 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 as SWE. When 𝑇𝑇(𝑆𝑆) is above 𝑇𝑇𝑏𝑏, snowmelt takes place at 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 with a rate of 

𝐷𝐷. The given description can be expressed as follows: 

 

𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = � 𝑃𝑃      ,      𝑇𝑇 < 𝑇𝑇𝑏𝑏
0        , 𝑇𝑇 ≥ 𝑇𝑇𝑏𝑏

 (2.1) 

 

In equation (2.1), 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 represents the rainfall 𝑃𝑃 becoming SWE (𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠). In the threshold 

scheme, 𝑃𝑃 is equal to zero when 𝑇𝑇 < 𝑇𝑇𝑏𝑏. Moreover, snowmelt, 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑝𝑝 subtracts water from 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

when 𝑇𝑇 ≥ 𝑇𝑇𝑏𝑏, the equation is as follows: 

 

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑝𝑝 = 𝑚𝑚𝑚𝑚𝑞𝑞(𝐷𝐷 ⋅ 𝑇𝑇, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) (2.2) 

 

After 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑝𝑝 is computed, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is updated as follows: 

 

𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑑𝑑𝑆𝑆
= 𝑞𝑞snow − qmelt,p (2.3) 
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The melted water from 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 updates the ponded storage (𝑆𝑆𝑝𝑝), modifying equation (1.1) 

as follows: 

 

𝑑𝑑𝑆𝑆𝑝𝑝
𝑑𝑑𝑆𝑆

= 𝑃𝑃 − 𝑞𝑞𝑝𝑝𝑝𝑝 − 𝑞𝑞𝑝𝑝𝑝𝑝 + 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑝𝑝 − 𝑒𝑒𝑝𝑝 (2.4) 

 

Additionally, when 𝑇𝑇 < 𝑇𝑇𝑏𝑏 we assume zero flow from the ponded storage to the topsoil 

(𝑞𝑞𝑝𝑝𝑝𝑝 = 0), representing the ground being frozen. 

We tested the model in the Nishnabotna River in Iowa, by comparing it against the 

original HLM (HLM-NoSnow) and the HLM using snowmelt as an additional force (HLM-

Fsnow). Figure 2.4 presents the three configurations that we implemented in the test. 

 

 
Figure 2.4 Representation of the hillslope processes in HLM. a) HLM-NoSnow, b) HLM-FSnow, 

and c) HLM-PSnow model scheme. Blue arrows represent precipitation 𝑃𝑃 and 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. Yellow 
arrows represent evapotranspiration from 𝑆𝑆𝑝𝑝, 𝑆𝑆𝑚𝑚, and 𝑆𝑆𝑠𝑠. Green arrows represent linear fluxes 

between storages. Purple arrows represent nonlinear fluxes. 

 

Figure 2.5 shows the simulated and observed flows at the five USGS gauges. According 

to the hydrograph plots, HLM-NoSnow underestimates the total volume and peak flows, 

evidencing the snow processes' relevance. In contrast, HLM-FSnow overestimates both variables 

in the five gauges. On the other hand, HLM-Snow accurately represents them. Besides, 
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compared with HLM-FSnow, HLM-Snow matches the observations simulating one peak instead 

of two. 

 

 

Figure 2.5 HLM flow simulations (color lines) and USGS gauges flow observations (black dots) 
during the flood of March 2019. Blue lines correspond to HLM-no-snow, yellow to HLM-F-

snow, and red to HLM-Snow. 

 

In addition to the discharge comparison, we compared the daily NSIDC SWE 

observations between March 3 and March 16, 2019. In this period, HLM-Snow accurately 

estimated the SWE oscillations (Figure 2.6a). This accuracy is evidenced by a KGE of 0.93, an 

NSE of 0.87, and a volumetric difference of -1.25%. In addition to the temporal comparisons, we 

present spatial differences between both SWE products at four dates (Figure 2.6b and c). Dates 1 



12 

 

and 2 compare the initial SWE storage and its initial accumulation. Date 3 compares SWE values 

after the precipitation event of March 9 (see Figure 2.6b) and Date 4, SWE during the flood 

event around March 13. In the four dates, HLM-Snow provides a spatial distribution that follows 

NSIDC. However, there are some differences. Between Dates 2 and 4, NSIDC-SWE exhibits 

more significant accumulations in the West and North, while HLM-SWE accumulations also 

include the East. We also noticed that NSIDC-SWE fields are more heterogeneous than HLM-

SWE ones. We attribute most of these differences to rainfall uncertainties, the TI method's 

simplicity, and the use of temperature derived from one weather gauge. Regardless of the reason, 

the overall performance of HLM-Snow indicates that capturing the SWE total is more relevant 

than capturing its spatial distribution. 
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Figure 2.6 Mean SWE accumulation (in cm) during the March 2019 flood event. a) HLM (blue 

line) and NSIDC (dots) mean SWE over the Nishnabotna watershed. b) NSIDC SWE estimations 
for March 6, 9, 11, and 13. c) HLM-FSnow SWE estimations for March 6, 9, 11, and 13. 

 

 Furthermore, we tested HLM with the snow configuration for the state of Iowa between 

2002 and 2020 using Stage IV rainfall and NARR temperature records. Figure 2.7 presents the 

KGE performance index for each USGS gauge in the state. KGE values oscillate between -∞ 

and 1 (perfect simulation), and values above 0.2 are acceptable (Knoben et al., 2019). According 

to the model, it has a KGE of around 0.6 for the period. This value decreases to about 0.4 during 

the winter-to-spring transition period. Despite the decrease, the performance is still acceptable. 
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Figure 2.7 Mean KGE computed at the USGS gauges in Iowa using HLM-Snow. a) Long-term 
KGE comparing the observed records between 2002 and 2020. b) Mean KGE comparing only 

the results between December and April. c) March 2019 KGE. 

 

Figure 2.8a and c present the 𝛥𝛥𝛥𝛥𝑝𝑝 and KGE obtained during March 2019 versus the ratio 

of the observed peak flows (qmax,2019/q𝑚𝑚𝑚𝑚𝑚𝑚). According to the results, the 𝛥𝛥𝛥𝛥𝑝𝑝 and the KGE 

improve with the event's magnitude. A similar result is observed in the spatial distribution of 

𝛥𝛥𝛥𝛥𝑝𝑝 (Figure 2.8b), where most of the gauges with an accurate peak flow estimation are over the 

West and center of Iowa. Moreover, around 60% of the gauges have a 𝛥𝛥𝛥𝛥𝑝𝑝 value below 50% 

(Figure 2.8d). 
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Figure 2.8 March 2019 event 𝛥𝛥𝛥𝛥𝑝𝑝 and KGE performance in function of its observed magnitude 
or peak ratio (q(max,2019)/q𝑚𝑚𝑚𝑚𝑚𝑚). a) peak ratio vs 𝛥𝛥𝛥𝛥𝑝𝑝, b) 𝛥𝛥𝛥𝛥𝑝𝑝 estimated at each gauge, c) peak 

ratio vs. the KGE, and d) 𝛥𝛥𝛥𝛥𝑝𝑝 frequency. 

 

The results suggest that HLM-Snow can represent snow-related peak flows during the 

winter-to-spring transition. According to the KGE and 𝛥𝛥𝛥𝛥𝑝𝑝 the model captures a significant 

portion of the observed oscillations and the large peaks. However, the model had limitations 

when representing low flows at this time of the year. Rainfall uncertainty and the snow model 

simplicity could be the leading causes of these limitations. Future work could expand on the 

development of the model and the variable involved in its performance during this transition 

period, as well as doing more in-depth research on different snow parameterizations and use of 

other rainfall products.  
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Currently, IFC is working on the operational implementation of the snow parameterization 

model for the state. Moreover, a complete description of the snow processes formulation and 

performance evaluation can be found in Velásquez et al. (2023). 

2.3 Implementation of the TETIS model in HLM 

We configured the TETIS model (Francés et al. 2007; Vélez, 2001) in HLM. In contrast 

with the Toplayer approach (Krajewski et al. 2017; Quintero et al. 2020), the TETIS model 

represents runoff processes using five storages. Figure 2.9 shows a schematic of the TETIS 

processes. The model uses six tanks to represent water storage in an extended soil column and 

the river. The tanks are called snow, static, surface, gravitational, aquifer, and channel. The 

vertical connections between tanks are the precipitation fluxes, snowmelt, evapotranspiration, 

infiltration, and percolation. The horizontal outputs from the tanks represent the overland flow, 

interflow, base flow, and total discharge. 

 

 

Figure 2.9 Schematic of the TETIS model structure in HLM. 
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We compared the model with the Toplayer using the described validation tool. Our 

results suggest that the TETIS approach can significantly improve specific regions of Iowa (see 

Figure 2.10). 

 

 

Figure 2.10 Difference between the TETIS KGE and Toplayer KGE. Positive values (red) 
represent regions where TETIS outperformed the Toplayer. Negative values (green) represent the 

opposite. 

 

Figure 2.11 presents streamflow simulations at Des Moines Lobe and Western Iowa 

basins. In this area, previous model developments had challenges reproducing the hydrologic 

response (Quintero et al. 2020). The upper left panel shows the results for the Des Moines River 

basin at Fort Dodge, located in the Des Moines Lobe. Simulations from previous model 

structures (in purple) in this basin could not represent the discharge volumes in May and June as 

they did not account for snow melting, poorly replicated fallen limbs, and the hydrographs were 

recessed. With the new model structure (in green), an improvement is made in representing the 
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falling limbs and the recession during the last part of the year. Some issues in the rainfall input 

prevented a better volume estimation in May and during one event in December. 

 

 

Figure 2.11 Flow simulations obtained at basins of the Des Moines Lobe landform (left column) 
and basins in Western Iowa. 

 

A full description of the TETIS implementation can be found in Quintero, et al (2022). 
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2.4 Rainfall products evaluation 

In tandem with the snow parameterization validation, we worked on testing a new rainfall 

product developed by the Iowa Flood Center (IFC). During the last years, IFC has provided 

rainfall estimates using the reflectivity (𝑍𝑍) value of the radars (IFC-RZ) (Krajewski et al. 2013; 

Seo et al. 2011, 2015; Seo and Krajewski, 2015). However, 𝑍𝑍 conversions tend to underestimate 

rainfall. Therefore, IFC developed a methodology to test the use of the specific attenuation 

measurement of the radar beam (IFC-RA). We ran HLM using both products (IFC-RA and IFC-

RZ) between 2013 and 2019. Figure 2.12 presents the KGE performance index for each case 

over the state and their frequency distribution. According to our results, IFC-RA provided results 

comparable to MRMS, obtaining higher frequencies of KGE values above 0.6. 

 

 

Figure 2.12 HLM KGE performance using IFC-RA (a) and IFC-RZ (b). The dots correspond to 
the USGS gauges in Iowa. c) presents the frequency distribution of both setups. 

 

Additionally, we used the volumetric difference obtained by the model when using both 

products (Pbias). According to Figure 2.13, HLM using IFC-RA has lower volumetric bias than 

the versions using IFC-RZ and MRMS. Nevertheless, IFC-RA results exhibit overestimations in 

the southeast region of the state. 
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Figure 2.13 HLM volumetric bias using IFC-RA (a) and IFC-RZ (b) and MRMS (c). The dots 
correspond to the USGS gauges in Iowa. d) presents the frequency distribution of the three 

setups. 

 

2.5 Upstream data assimilation 

During Phase V, we developed a strategy to perform data assimilation (DA) upstream of 

a gauged reach. The DA uses streamflow data to estimate the routing parameters 𝑣𝑣0 and 𝜆𝜆1 

(Mantilla, 2007). We created a hypothetical scenario to test the algorithm where the routing 

parameters randomly change inside the Skunk River Watersheds (Iowa). Then, we obtained 

synthetic streamflow observations at the outlet running HLM for the hypothetical scenario. 

Finally, we used the Ensemble Kalman Inversion (EKI) approach to guess those parameters 

using only the synthetic streamflow. In Figure 2.14, we present the differences between the 

provided and estimated parameters (a), and the differences between the synthetic streamflows 

and those obtained after using the EKI approach. 
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Figure 2.14 EKI Routing parameters estimation and simulated streamflow. 

 

Furthermore, we also conducted experiments to improve HLM in a real-life scenario. We 

observed discharge records from twelve USGS gauges inside the Cedar River Watershed (Iowa) 

and used the Ensemble Kalman Filter Inversion (EKI) to assimilate downstream information to 

improve HLM simulations upstream. Using discharge records at the outlet, EKI generates a set 

of particles that change the model routing parameters. We evaluate the particles upstream, 

obtaining an envelope of possible model results at each link. Finally, we validated the EKI 

performance by comparing it with the upstream discharge observations. Figure 2.15 presents the 

results obtained at Shell Rock River. According to it, the mean behavior of the particles achieves 

a good representation of the observations improving the MRMS model reference run. 
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Figure 2.15 Results from the EKI data assimilation performed at Shell Rock River (4,487 km^2) 
upstream of Cedar River (16,861 km^2). The blue area represents the 10-90 interquartile region 

obtained by the particles, and the blue line is the particles' mean. The dashed black line 
represents the observed discharge, and the green line is the reference provided by HLM using 

MRMS without data assimilation. 

 

Our EKI data assimilation results are promising as it  provided accurate discharge 

forecasts. In the described approach, we used discharge observations to improve the forecast 

upstream. However, our results are limited to one flooding event in the Cedar River watershed. 

Further development will include exploring EKI implementation in other watersheds and for 

different rainfall events.      
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Chapter 3 Performance evaluation tool  

We further explored HydroVise to develop a tool that allows us to validate our results 

(Jadidoleslam et al. 2020). We built our validation tool using Dash (https://plotly.com/dash/) for 

Python and Mapbox (https://www.mapbox.com/). We designed it to help us identify the 

strengths and shortcomings of our models' results and allow us to perform comparisons between 

parameterizations. The platform loads two top panels (see Figure 3.1). 

 

 

Figure 3.1 Top panels of the hydrologic modeling validation tool. 

 

The left panel presents the observed streamflow records in the selected USGS gauge and 

is able to overlay results from multiple parameterizations, change the Y-axis scale, and navigate 

through the history of the results. For example, in Figure 3.2, we present the results from the 

simulation of three different HLM parameterizations at Clear Creek (USGS: 05454220). The 

panel includes information from the gauge, such as its name and total upstream area. It allows 

the selected parameterizations to turn off and on and move through the records. 

https://plotly.com/dash/
https://www.mapbox.com/
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Figure 3.2 Streamflow plot panel showing the results for Clear Creek, Iowa. 

 

The Y-axis is able to switch between linear and log scales. The linear scale is ideal for 

comparing peak flows, while the log scale is more suited for recessions and baseflow 

comparisons. Figure 3.3 presents an example of Figure 3.2 results in the log-scale. 
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Figure 3.3 Streamflow plot panel showing the Clear Creek, Iowa results, in log-scale. 

 

The right panel identifies spatial patterns of the model results. We included a list of 

several performance indexes, such as KGE and Nash. We also included options to change the 

color table and its range, as well as presenting the best parameterization by gauge or comparing 

two parameterizations using a selected performance index.  

By adding the option to analyze simulation results by events, the user can select any 

specific event to analyze the detailed simulated and observed hydrographs and performance (see 

Figure 3.4). 
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Figure 3.4 Event-based analysis using the platform. 

 

We developed the validation software as a tool for implementing hydrological models at 

a regional level. It is an ongoing work that has helped us identify the main shortcomings of HLM 

in Iowa. However, its application can be expanded to other areas and include additional 

hydrological models. Future developments will include panels to present the performance 

parameters' distributions and compare simulated and observed peak flows. 
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Chapter 4 Technology transfer  

We successfully transferred our HLM knowledge to the researchers at the University of 

Nebraska during the last months of this phase. The transfer included the implementation of 

HLM-Snow in their server and the installation of eight bridge sensors over the Elkhorn River 

network. 

4.1 HLM implementation 

The transfer started by implementing a snow model that mimics the accumulation and 

melting of snow during the early spring season. Figure 4.1 presents the average Snow Water 

Equivalent (SWE) observed (blue) and simulated (orange) for the area of the Elkhorn River in 

Nebraska. Despite the model's simplicity, it successfully represents the observed SWE 

oscillations in the region. 
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Figure 4.1 Mean Observed (orange) and simulated (blue) SWE over the Elkhorn watershed. 

 

After testing the SWE model, we transferred HLM and implemented it on the Elkhorn 

River Watershed. We used temperature records from NLDAS and stage-IV rainfall estimations 

in the implementation. Figure 4.2 presents the snow water equivalent (SWE) simulated by HLM 

in the Elkhorn watershed. According to it, the HLM-Snow parameterization can reproduce most 

of the observed discharge oscillations due to snowmelt. 
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Figure 4.2 HLM-Snow simulations at the Elkhorn River Watershed for March 2019. 

 

Along with the model development and implementation, we helped the University of 

Nebraska build a web platform to display the hydrological simulation results. Figure 4.3 presents 

a snapshot of the platform implemented for the Elkhorn River Watershed. Like the platform 

described in Chapter 3, their implementation has a map of the watershed and its network. It also 
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has a panel to present the observations and the model results and a panel to present the properties 

of the selected USGS gauge. 

 

 

Figure 4.3 Elkhorn River web platform example. 

 

4.2 Bridge sensors installation  

We installed eight sensors over the Elkhorn River, Nebraska, reporting level observations 

every 15 minutes. The sensors emit a sonar signal toward the stream to measure the distance 

between the sensor and the water table. First, we determined the localization of the sensors to 

cover tributaries not observed by the USGS network. Then, we refined the localization based on 

the field conditions. Figure 4.4 shows the Elkhorn network, the USGS, and the newly installed 

sensors. 
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Figure 4.4 Elkhorn River Network (blue lines), USGS gauges (green), and installed bridge 
sensors (red). Image taken from Koya et al. (2023). 

 

The bridge sensors report water level; however, we require discharge to validate the 

hydrological model. Therefore, we converted the level to discharge using rating curves. We built 

synthetic rating curves using the HEC-RAS hydraulic model. We set up the model using the 

section bathymetry at each gauge and obtained discharge observations for different level values. 

Figure 4.5 presents the synthetic rating curves obtained for each sensor. 
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Figure 4.5 Synthetic rating curves developed for each installed level gauge. Taken from Koya et 
al. (2023). 
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Currently, the sensors report observations to IFIS. Nevertheless, the University of 

Nebraska accesses it through an FTP service. A full description and the results derived from the 

described collaboration can be found in Koya et al. (2021). 
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Chapter 5 Conclusions 

 An essential aspect of providing a safe, efficient, and effective transportation system is 

anticipating natural hazards that can lead to road closures. Extreme floods can lead to bridge 

overtopping and/or compromising the structural integrity of river overpasses, including box 

culverts. The flood forecasting model and information system proposed here provides a tool to 

anticipate potential hazardous flood-related situations. It would allow time to initiate action plans 

to minimize the impact on the overall transportation system. The forecasting model can be used 

in real-time to anticipate floods and to look at past flooding scenarios to determine if all actions 

taken were appropriate or can be improved. Our forecasting system will improve safety and 

minimize the risk of increasing multi-modal freight movements on the U.S. surface 

transportation system by enhancing safety and warning of potential road closures. 

 As part of this project, we have provided a prototype forecasting platform with five 

specific innovations. 1) A high-definition network that identifies better bridge intersections and 

areas of interest, 2) The incorporation of snow processes to simulate early spring floods, 3) The 

implementation of the TETIS scheme to simulate runoff processes, 4) The development of a data 

assimilation method that improves forecasts using downstream observations, and 5) the 

development of a platform that compares model configurations at the state level. Our 

developments give us confidence that we can continue developing a forecasting system that is 

transferable to other locations in the Midwest. As floods continue to be the costliest disaster in 

the nation, it becomes critical that tools are developed to better predict them. 
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